Progression map:

Key Concepts	Year 12	Year 13
Pure maths	- Algebra and functions - Coordinate geometry - Further algebra - Trigonometry - vectors - Differentiation - Integration - Exponentials and logarithms	- Algebraic methods - Functions and modelling - Series and sequences - Binomial Theorem - Trigonometry - Parametric equations - Differentiation - Numerical methods - Integration - Vectors
statistics	- Statistical sampling - Data presentation and interpretation - Probability - Statistical Distributions - Statistical Hypothesis Testing	- Regression and correlation - Probability - Normal Distribution
Mechanics	- Quantities and units in mechanics - Kinematics 1 - Forces and Newtons laws - Kinematics 2	- Moments - Forces at any angle - Application of kinematics - Application of forces - Further kinematics

Long-term plan: organises the knowledge from the progression map into units to give an overview of what is taught when in the curriculum.

Year 12				
Autumn Term	Spring Term		Summer Term	
Unit Title: Unit length: -Algebra and functions 27 hours -Coordinate geometry 13 hours -Vectors - Statistical sampling	Unit Title: - Further Algebra - Trigonometry - Differentiation - Data presentation and interpretation - Probability - Quantities and units in mechanics - Kinematics - Forces and Newtons laws	Unit length: 8 hours 16 hours 12 hours 8 hours 3 hours 3 hours 17 hours 10 hours	Unit Title: - Further Algebra - Integration - exponentials and logarithms - Statistical distributions - Statistical hypothesis testing	Unit length: 7 hours 11 hours 12 hours 5 hours 7 hours
Domains of Knowledge: - algebraic manipulation, indices and surds - factorising,solving,graphs and the discriminants. - quadratics and linear equations - linear and quadratic inequalities - cubic, quartic and reciprocal graphs - transforming graphs - straight line graphs including parallel and perpendicular - equation of a circle - representing vectors and problems - Sampling techniques	Domains of Knowledge: - Algebraic division, factor theorem and proof - Trigonometric ratios and graphs - trigonometric identities and equations - Differentiating polynomials - Calculation and interpretation of measures of location. - Interpret diagrams for single variable data. - Calculating probabilities including independent and mutually exclusive. - mathematical modelling and standard SI units. - Forces - Constant and variable acceleration		Domains of Knowledge: - Binomial expansion - integration of definite and indefinite integrals including area under a graph - Exponential functions and natural logarithms. - Discrete uniform distribution - Calculate probabilities using the binomial distribution. - hypothesis testing involving binomial distribution.	
Relevant Key Concepts: - Pure Mathematics	Key Concepts: - Pure mathematics		Key Concepts: - Pure mathematics	

- Applied Statistics	- Applied Statistics - Applied Mechanics	- Applied Statistics - Applied mechanics
Gateway knowledge: - collecting like terms and factorising - surds - Solving linear equations - solving quadratic equations - working with inequalities - solving quadratic inequalities - function notation and shapes of standard graphs - rules of indices - simultaneous equations - completing the square. - Infer properties of populations or distributions from a sample, while knowing the limitations of sampling - Apply statistics to describe a population	Gateway knowledge: - Expanding and substitution - Pythagoras and Trigonometry - The sine and cosine rule. Area of any triangle - Bearings - Fractions - Area and Volume - Rearranging equations - Construct and interpret diagrams for grouped discrete data and continuous data. - Change freely between related standard units - Use compound units such as speed, rates of pay, unit pricing, density and pressure - Plot and interpret graphs - Calculate or estimate gradients of graphs and area under graphs. - Solve linear and quadratic equations. Simultaneous equations. - Identify and interpret roots, intercepts, turning points of quadratic functions graphically; deduce roots algebraically and turning points by completing the square - Calculate basic probabilities. - Venn diagrams	Gateway knowledge: - expanding and factorisation - proof - differentiation - indices - Order positive and negative integers, decimals and fractions; use the symbols $=, \neq,<,>, \leq$, and \geq - Understand and use simple, discrete probability distributions (calculation of mean and variance of discrete random variables is excluded), including the binomial distribution, as a model; calculate probabilities using the binomial distribution - sampling
Assessment end-points:	Assessment end-points:	Assessment end-points:

- Understand and use the laws of indices for all rational exponents
- Use and manipulate surds, including rationalising the denominator
- Solve simultaneous equations in two variables by elimination and by substitution, including one linear and one quadratic equation
- Solve linear and quadratic inequalities in a single variable and interpret such inequalities graphically, including inequalities with brackets and fractions
- Represent linear and quadratic inequalities such as $y>x+1$ and $y>a x^{2}+b x+c$ graphically
- Understand and use graphs of functions; sketch curves defined by simple equations including polynomials, $y=$ and $y=$ (including their vertical and horizontal asymptotes)
- Understand the effect of simple transformations on the graph of $y=f(x)$ including sketching associated graphs:
$y=a \mathrm{f}(x), \quad y=\mathrm{f}(x)+a, \quad y=\mathrm{f}(x+a), \quad y=\mathrm{f}(a x)$
- Understand and use the equation of a straight line, including the forms $y-y _1=m\left(x-x _1\right)$ and $a x+b y+c=0$
- Understand and use the coordinate geometry of the circle including using the equation of a circle in the form $\llbracket(x-a) \rrbracket \wedge 2+\llbracket(y-b) \rrbracket \wedge 2=r^{\wedge} 2$
- Use vectors to solve problems in pure mathematics and in context, (including forces)
- Understand and use sampling techniques, including simple random sampling and opportunity sampling.
- Select or critique sampling techniques in the context of solving a statistical problem, including understanding that different samples
- Manipulate polynomials algebraically, including expanding brackets and collecting like terms, factorisation and simple algebraic division; use of the factor theorem
- Understand and use the structure of mathematical proof, proceeding from given assumptions through a series of logical steps to a conclusion; use methods of proof, including: proof by deduction, proof by exhaustion, disproof by counter-example
- Understand and use the sine, cosine and tangent functions; their graphs, symmetries and periodicity
- Solve simple trigonometric equations in a given interval, including quadratic equations in sin, cos and tan and equations involving multiples of the unknown angle
- Differentiation from first principles for small positive integer powers of x
- Differentiate, for rational values of n, and related constant multiples, sums and differences
- Apply differentiation to find gradients, tangents and normals, maxima and minima and stationary points
- Interpret diagrams for single-variable data, Interpret measures of central tendency and variation, extending to standard deviation
- Understand and use mutually exclusive and independent events when calculating probabilities
- Understand and use fundamental quantities and units in the S.I. system: length, time, mass.
- Understand and use derived quantities and units: velocity, acceleration, force, weight
- Understand the concept of a force; understand and use Newton's first law.
- Understand and use the binomial expansion of for positive integer n
- Integrate (excluding $n=-1$), and related sums, differences and constant multiples
- Evaluate definite integrals; use a definite integral to find the area under a curve
- Know and use the function and its graph, where a is positive
- Know and use the function and its graph
- Know and use the exponential function and its graph
- Know and use $\ln x$ as the inverse function of exponential function
- Understand and use the laws of logarithms:
- solve exponential and log equations
- Understand and use exponential growth and decay; use in modelling
- Conduct a statistical hypothesis test for the proportion in the binomial distribution and interpret the results in context
- Understand and use Newton's second law for motion in a straight line (restricted to forces in two perpendicular directions or simple cases of forces given as 2D (i, \mathbf{j}) vectors).
- Understand and use Newton's third law; equilibrium of forces on a particle and motion in a straight line; application to problems involving smooth pulleys and connected particles
- Use calculus in kinematics for motion in a straight line.

Year 13					
Autumn Term		Spring Term		Summer Term	
Unit Title: - Algebraic Methods - functions and modelling - Trigonometry - parametric equations	Unit length: 8 hours 10 hours 24 hours 5 hours	Unit Title: - series and sequences - The Binomial Theorem - Numerical Methods - Integration	Unit length: 9 hours 7 hours 8 hours 28 hours	Unit Title: - Probability - Normal distribution - Applications of kinematics - Application of forces	Unit length: 7 hours 16 hours 5 hours 8 hours

- differentiation - vectors - regression and 5 hours correlation 7 hours -Moments -Forces at any angle 5 hours 6 hours		- Further kinematics - revision and practise 6 hours
Domains of Knowledge: - proof - algebraic and partial fractions - modulus/composite and inverse functions - transformations - modelling with functions - radians - small angles - sec/cosec/cot - compound/double and half angles - equivalent identities - proofing identities - conversion between parametric and cartesian forms - curve sketching and modelling. - Further differentiation - Use vectors in 3D - Correlation coefficients - statistical hypothesis testing for zero correlation - Moments - Resolving forces and friction forces.	Domains of Knowledge: - Arithmetic and geometric progression - Recurrence and iterations - expanding use binomial theorem - Expansion of functions using partial fractions - solving by iterative methods. - Newton Raphson method - Integration using a variety of techniques.	Domains of Knowledge: - Using set notation and conditional probability - Understand and use the Normal Distribution. - Use the normal distribution as an approximation to the binomial. - Statistical hypothesis testing for the mean of the normal distribution - Projectiles - Equilibrium and statics of a particle. - Dynamics of a particle. - Constant and variable acceleration.
Relevant Key Concepts: - Pure mathematics - Applied Statistics - Applied Mechanics	Key Concepts: - Pure mathematics	Key Concepts: - Applied Statistics - Applied Mechanics
Gateway knowledge: - Pythagoras Theorem and Trigonometry - Algebraic manipulation including completing the square, changing subject of formula and substitution - Surds, prime and irrational numbers - Algebraic fractions	Gateway knowledge: - Generate terms of a sequence from either a term-to-term or a position-to-term rule - Use simple arithmetic and geometric progression and geometric sequence	Gateway knowledge: - independent and mutually exclusive events - simultaneous equations - Pythagoras, Trigonometry - Vectors

- Composite, inverse and transformations of polynomial functions
- Knowledge of polynomial, trigonometric, exponential and logarithmic functions, including their graphs
- Sine and cosine function
- Length of arc and area of sector
- Coordinate geometry
- function notation
- Vectors
- solving simultaneous equations
- 2D trigonometry
- Cosine and sine rules
- Finding expressions for the nth term of linear and quadratic sequences
- Algebraic fractions
- Iterations and approximate areas under curves
- Kinematics (velocity-time graphs
-

Assessment end-points:

- Understand and use sigma notation for sums of series
- Understand and work with arithmetic sequences and series, including the formulae for nth term and the sum to n terms
- Understand and work with geometric sequences and series including the formulae for the nth term and the sum of a finite geometric series; the sum to infinity of a convergent geometric series, including the use of $|r|<1$; modulus notation
- Understand and use the binomial expansion of (a+ $b x$) n for rational n, including its use for approximation;
- Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams

Assessment end-points:

- Understand set notation
- Understand conditional probability
- Understand and use the Normal distribution as a model; find probabilities using the Normal distribution
- Link to histograms, mean, standard deviation, points of inflection and the binomial distribution
- Select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or the Normal model may not be appropriate
- Conduct a statistical hypothesis test for the mean of the Normal distribution with known, given or assumed variance and interpret the results in context
- Model motion under gravity in a vertical plane using vectors; projectiles
- Understand and use Newton's second law for motion in a straight line. Understand and use Newton's third law; equilibrium of forces on a particle and motion in a straight line; application to problems involving smooth pulleys and connected particles; resolving forces in 2 dimensions; equilibrium of a particle under coplanar forces.
- Understand and use the standard small angle approximations of sine, cosine and tangent
- Understand and use the definitions of secant, cosecant and cotangent and of arcsin, arccos and arctan; their relationships to sine, cosine and tangent; understanding of their graphs; their ranges and domains. Use their identities
- Understand and use double angle formulae. Understand equivalent forms of $R \cos (\theta \pm \alpha)$ or $R \sin (\theta \pm \alpha)$
- Understand and use the parametric equations of curves and conversion between Cartesian and parametric forms
- Differentiation from first principles for $\sin x$ and $\cos x$
- Differentiate $\mathrm{e}^{k x}, a^{k x}, \sin k x, \cos k x, \tan k x$ and related sums, differences and constant multiples. Understand and use the derivative of $\ln x$
- Differentiate using the product rule, the quotient rule and the chain rule, including problems involving connected rates of change and inverse functions
- Differentiate simple functions and relations defined implicitly or parametrically, for first derivative only
- Construct simple differential equations in pure mathematics and in context, (contexts may include kinematics, population growth and modelling the relationship between price and demand)
- Solve equations using the Newton-Raphson method and other recurrence relations of the form $x_{n+1}=$ $g\left(x_{n}\right)$
- Integrate x^{n}, (including) and integrate $\mathrm{e}^{k x}, \sin k x$, $\cos k x$ and related sums, differences and constant multiples. Standard functions and involving identities
- Students should recognise integrals of the form $=\ln$ $|f(x)|+c$.
- Use a definite integral to find the area under a curve and the area between two curves
- Carry out simple cases of integration by substitution and integration by parts, using partial fractions
- Evaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions
- Understand and use addition of forces; resultant forces; dynamics for motion of a particle in a plane.
- An understanding of $\mathrm{F} \leq m R$ in a situation of equilibrium.
- Moments: problems involving parallel and non-parallel coplanar forces e.g. ladder problems.
- Extend the constant acceleration formulae of motion to 2 dimensions using vectors.
- Use calculus in kinematics for (variable acceleration) motion in a straight line. Extend to 2 dimensions using vectors.
- Use and understand vectors in 3D.
- Understand and calculate pmcc
- Carry out hypothesis test for zero correlation.
- Understand and use moments in simple static contexts.
- Understand and use the $F \leq \mu R$ model for friction; coefficient of friction; motion of a body on a rough surface; limiting friction and limiting equilibrium.

