Progression map: breaks down the key concepts to specify the most important knowledge and how that knowledge builds within the curriculum.

Key Concepts	Year 12	Year 13
Pure maths	 Algebra and functions Coordinate geometry Further algebra Trigonometry vectors Differentiation Integration Exponentials and logarithms 	 Algebraic methods Functions and modelling Series and sequences Binomial Theorem Trigonometry Parametric equations Differentiation Numerical methods Integration Vectors
statistics	 Statistical sampling Data presentation and interpretation Probability Statistical Distributions Statistical Hypothesis Testing 	 Regression and correlation Probability Normal Distribution
Mechanics	 Quantities and units in mechanics Kinematics 1 Forces and Newtons laws Kinematics 2 	 Moments Forces at any angle Application of kinematics Application of forces Further kinematics

Long-term plan: organises the knowledge from the progression map into units to give an overview of what is taught when in the curriculum.

Year 12					
Autumn Term		Spring Term		Summer Term	
Unit Title: Algebra and functions Coordinate geometry Vectors Statistical sampling 	Unit length: 27 hours 13 hours 14 hours 3 hours	Unit Title: • Further Algebra • Trigonometry • Differentiation • Data presentation and interpretation • Probability • Quantities and units in mechanics • Kinematics • Forces and	Unit length: 8 hours 16 hours 12 hours 8 hours 3 hours 3 hours 17 hours 10 hours	 Unit Title: Further Algebra Integration exponentials and logarithms Statistical distributions Statistical hypothesis testin 	Unit length: 7 hours 11 hours 12 hours 5 hours 7 hours
 Domains of Knowledge: algebraic manipulation, indices and surds factorising, solving, graphs and the discriminants. quadratics and linear equations linear and quadratic inequalities cubic, quartic and reciprocal graphs transforming graphs straight line graphs including parallel and perpendicular equation of a circle representing vectors and problems Sampling techniques 		 Forces and Newtons laws Domains of Knowledge: Algebraic division, factor theorem and proof Trigonometric ratios and graphs trigonometric identities and equations Differentiating polynomials Calculation and interpretation of measures of location. Interpret diagrams for single variable data. Calculating probabilities including independent and mutually exclusive. mathematical modelling and standard SI units. Forces Constant and variable acceleration 		 Domains of Knowledge: Binomial expansi integration of derincluding area un Exponential funct Discrete uniform Calculate probab distribution. hypothesis testin distribution. 	I inite and indefinite integrals der a graph tions and natural logarithms. distribution distribution g involving binomial
Relevant Key Concepts: • Pure Mathematics		Key Concepts: • Pure mathematics		Key Concepts: • Pure mathematic	S

Applied Statistics	Applied Statistics	Applied Statistics
	Applied Mechanics	Applied mechanics
Gateway knowledge: • collecting like terms and factorising • surds • Solving linear equations • solving quadratic equations • working with inequalities • solving quadratic inequalities • function notation and shapes of standard graphs • rules of indices • simultaneous equations • completing the square. • Infer properties of populations or distributions from a sample, while knowing the limitations of sampling • Apply statistics to describe a population	 Gateway knowledge: Expanding and substitution Pythagoras and Trigonometry The sine and cosine rule. Area of any triangle Bearings Fractions Area and Volume Rearranging equations Construct and interpret diagrams for grouped discrete data and continuous data. Change freely between related standard units Use compound units such as speed, rates of pay, unit pricing, density and pressure Plot and interpret graphs Calculate or estimate gradients of graphs and area under graphs. Solve linear and quadratic equations. Simultaneous equations. Identify and interpret roots, intercepts, turning points of quadratic functions graphically; deduce roots algebraically and turning points by completing the square Calculate basic probabilities. Venn diagrams 	 Gateway knowledge: expanding and factorisation proof differentiation indices Order positive and negative integers, decimals and fractions; use the symbols =, ≠, <, >, ≤, and ≥ Understand and use simple, discrete probability distributions (calculation of mean and variance of discrete random variables is excluded), including the binomial distribution, as a model; calculate probabilities using the binomial distribution sampling
Assessment end-points:	Assessment end-points:	Assessment end-points:

- Understand and use the laws of indices for all rational exponents
- Use and manipulate surds, including rationalising the denominator
- Solve simultaneous equations in two variables by elimination and by substitution, including one linear and one quadratic equation
- Solve linear and quadratic inequalities in a single variable and interpret such inequalities graphically, including inequalities with brackets and fractions
- Represent linear and quadratic inequalities such as y > x + 1 and $y > ax^2 + bx + c$ graphically
- Understand and use graphs of functions; sketch curves defined by simple equations including polynomials, y = and y = (including their vertical and horizontal asymptotes)
- Understand the effect of simple transformations on the graph of y = f(x) including sketching associated graphs:

y = af(x), y = f(x) + a, y = f(x + a), y = f(ax)

- Understand and use the equation of a straight line, including the forms y-y_1=m(x-x_1) and ax+by+c=0
- Understand and use the coordinate geometry of the circle including using the equation of a circle in the form [(x-a)] ^2+ [(y-b)] ^2=r^2
- Use vectors to solve problems in pure mathematics and in context, (including forces)
- Understand and use sampling techniques, including simple random sampling and opportunity sampling.
- Select or critique sampling techniques in the context of solving a statistical problem, including understanding that different samples

- Manipulate polynomials algebraically, including expanding brackets and collecting like terms, factorisation and simple algebraic division; use of the factor theorem
- Understand and use the structure of mathematical proof, proceeding from given assumptions through a series of logical steps to a conclusion; use methods of proof, including: proof by deduction, proof by exhaustion, disproof by counter-example
- Understand and use the sine, cosine and tangent functions; their graphs, symmetries and periodicity
- Solve simple trigonometric equations in a given interval, including quadratic equations in sin, cos and tan and equations involving multiples of the unknown angle
- Differentiation from first principles for small positive integer powers of *x*
- Differentiate , for rational values of *n*, and related constant multiples, sums and differences
- Apply differentiation to find gradients, tangents and normals, maxima and minima and stationary points
- Interpret diagrams for single-variable data, Interpret measures of central tendency and variation, extending to standard deviation
- Understand and use mutually exclusive and independent events when calculating probabilities
- Understand and use fundamental quantities and units in the S.I. system: length, time, mass.
- Understand and use derived quantities and units: velocity, acceleration, force, weight
- Understand the concept of a force; understand and use Newton's first law.

- Understand and use the binomial expansion of for positive integer *n*
- Integrate (excluding n = -1), and related sums, differences and constant multiples
- Evaluate definite integrals; use a definite integral to find the area under a curve
- Know and use the function and its graph, where *a* is positive
- Know and use the function and its graph
- Know and use the exponential function and its graph
- Know and use ln *x* as the inverse function of exponential function
- Understand and use the laws of logarithms:
- solve exponential and log equations
- Understand and use exponential growth and decay; use in modelling
- Conduct a statistical hypothesis test for the proportion in the binomial distribution and interpret the results in context

can lead to different conclusions about the population	 Understand and use Newton's second law for motion in a straight line (restricted to forces in two perpendicular directions or simple cases of forces given as 2D (i, j) vectors). Understand and use Newton's third law; equilibrium of forces on a particle and motion in a straight line; application to problems involving smooth pulleys and connected particles. Use calculus in kinematics for motion in a straight line. 	
--	---	--

Year 13					
Autumn Term		Spring Term		Summer Term	
Unit Title:	Unit length:	Unit Title:	Unit length:	Unit Title:	Unit length:
 Algebraic 	8 hours	 series and 	9 hours	 Probability 	7 hours
Methods		sequences		Normal	16 hours
 functions and 	10 hours	The Binomial	7 hours	distribution	
modelling		Theorem		 Applications of 	5 hours
 Trigonometry 	24 hours	 Numerical 	8 hours	kinematics	
parametric		Methods		 Application of 	
equations	5 hours	 Integration 	28 hours	forces	8 hours

 differentiation vectors regression and correlation fours fours Moments Forces at any angle fours Domains of Knowledge: proof algebraic and partial fractions modulus/composite and inverse functions transformations modelling with functions radians small angles sec/cosec/cot compound/double and half angles equivalent identities proofing identities conversion between parametric and cartesian forms curve sketching and modelling. Further differentiation Use vectors in 3D Correlation coefficients statistical hypothesis testing for zero correlation Moments 	Domains of Knowledge: • Arithmetic and geometric progression • Recurrence and iterations • expanding use binomial theorem • Expansion of functions using partial fractions • solving by iterative methods. • Newton Raphson method • Integration using a variety of techniques.	 Further kinematics revision and practise Domains of Knowledge: Using set notation and conditional probability Understand and use the Normal Distribution. Use the normal distribution as an approximation to the binomial. Statistical hypothesis testing for the mean of the normal distribution Projectiles Equilibrium and statics of a particle. Dynamics of a particle. Constant and variable acceleration.
Relevant Key Concepts: • Pure mathematics • Applied Statistics • Applied Mechanics	Key Concepts: • Pure mathematics	Key Concepts: • Applied Statistics • Applied Mechanics
 Gateway knowledge: Pythagoras Theorem and Trigonometry Algebraic manipulation including completing the square, changing subject of formula and substitution Surds, prime and irrational numbers Algebraic fractions 	 Gateway knowledge: Generate terms of a sequence from either a term-to-term or a position-to-term rule Use simple arithmetic and geometric progression and geometric sequence 	 Gateway knowledge: independent and mutually exclusive events simultaneous equations Pythagoras, Trigonometry Vectors

 Composite, inverse and transformations of polynomial functions Knowledge of polynomial, trigonometric, exponential and logarithmic functions, including their graphs Sine and cosine function Length of arc and area of sector Coordinate geometry function notation Vectors solving simultaneous equations 2D trigonometry Cosine and sine rules 	 Finding expressions for the <i>n</i>th term of linear and quadratic sequences Algebraic fractions Iterations and approximate areas under curves Kinematics (velocity–time graphs 	
 Assessment end-points: Understand and use the structure of mathematical proof, including proof by contradiction Simplify rational expressions including by factorising and cancelling, and algebraic division (by linear expressions only) Decompose rational functions into partial fractions The modulus of a linear function Understand and use composite functions; inverse functions and their graphs Understand the effect of simple transformations on the graph of y = f(x) including sketching associated graphs and combinations of these transformations Use of functions in modelling, including consideration of limitations and refinements of the models Work with radian measure, including use for arc length and area of sector 	 Assessment end-points: Understand and use sigma notation for sums of series Understand and work with arithmetic sequences and series, including the formulae for <i>n</i>th term and the sum to <i>n</i> terms Understand and work with geometric sequences and series including the formulae for the <i>n</i>th term and the sum of a finite geometric series; the sum to infinity of a convergent geometric series, including the use of r < 1; modulus notation Understand and use the binomial expansion of (a + bx)n for rational n, including its use for approximation; Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams 	 Assessment end-points: Understand set notation Understand conditional probability Understand and use the Normal distribution as a model; find probabilities using the Normal distribution Link to histograms, mean, standard deviation, points of inflection and the binomial distribution Select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or the Normal model may not be appropriate Conduct a statistical hypothesis test for the mean of the Normal distribution with known, given or assumed variance and interpret the results in context Model motion under gravity in a vertical plane using vectors; projectiles Understand and use Newton's second law for motion in a straight line. Understand and use Newton's third law; equilibrium of forces on a particle and motion in a straight line; application to problems involving smooth pulleys and connected particles; resolving forces in 2 dimensions; equilibrium of a particle under coplanar forces.

- Understand and use the standard small angle approximations of sine, cosine and tangent
- Understand and use the definitions of secant, cosecant and cotangent and of arcsin, arccos and arctan; their relationships to sine, cosine and tangent; understanding of their graphs; their ranges and domains. Use their identities
- Understand and use double angle formulae. Understand equivalent forms of $R \cos (\theta \pm \alpha)$ or $R \sin (\theta \pm \alpha)$
- Understand and use the parametric equations of curves and conversion between Cartesian and parametric forms
- Differentiation from first principles for sin *x* and cos *x*
- Differentiate e^{kx}, a^{kx}, sin kx, cos kx, tan kx and related sums, differences and constant multiples. Understand and use the derivative of ln x
- Differentiate using the product rule, the quotient rule and the chain rule, including problems involving connected rates of change and inverse functions
- Differentiate simple functions and relations defined implicitly or parametrically, for first derivative only
- Construct simple differential equations in pure mathematics and in context, (contexts may include kinematics, population growth and modelling the relationship between price and demand)

- Solve equations using the Newton-Raphson method and other recurrence relations of the form x_{n+1} = g(x_n)
- Integrate *xⁿ*, (including) and integrate e^{*kx*}, sin *kx*, cos *kx* and related sums, differences and constant multiples. Standard functions and involving identities
- Students should recognise integrals of the form = ln |f(x)| + c.
- Use a definite integral to find the area under a curve and the area between two curves
- Carry out simple cases of integration by substitution and integration by parts, using partial fractions
- Evaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions

- Understand and use addition of forces; resultant forces; dynamics for motion of a particle in a plane.
- An understanding of F ≤ *mR* in a situation of equilibrium.
- Moments: problems involving parallel and non-parallel coplanar forces e.g. ladder problems.
- Extend the constant acceleration formulae of motion to 2 dimensions using vectors.
- Use calculus in kinematics for (variable acceleration) motion in a straight line. Extend to 2 dimensions using vectors.

٠	Use and understand vectors in 3D.	
٠	Understand and calculate pmcc	
•	Carry out hypothesis test for zero correlation.	
•	Understand and use moments in simple static contexts.	
•	Understand and use the $F \le \mu R$ model for friction; coefficient of friction; motion of a body on a rough surface; limiting friction and limiting equilibrium.	